Lamarckian memetic algorithms: local optimum and connectivity structure analysis
نویسندگان
چکیده
Memetic Algorithms (MAs) represent an emerging field that has attracted increasing research interest in recent times. Despite the popularity of the field, we remain to know rather little of the search mechanisms of MAs. Given the limited progress made on revealing the intrinsic properties of some commonly used complex benchmark problems and working mechanisms of Lamarckian memetic algorithms in general non-linear programming, we introduce in this work for the first time the concepts of local optimum structure and generalize the notion of neighborhood to connectivity structure for analysis of MAs. Based on the two proposed concepts, we analyze the solution quality and computational efficiency of the core search operators in Lamarckian memetic algorithms. Subsequently, the structure of local optimums of a few representative and complex benchmark problems is studied to reveal the effects of individual learning on fitness landscape and to gain clues into the success or failure of MAs. The connectivity structure of local optimum for different memes or individual learning procedures in Lamarckian MAs on the benchmark problems is also investigated to understand the effects of choice of memes in MA design.
منابع مشابه
Lamarckian Evolution , The Baldwin E ectand Function
We compare two forms of hybrid genetic search. The rst uses Lamarckian evolution, while the second uses a related method where local search is employed to change the tness of strings, but the acquired improvements do not change the genetic encoding of the individual. The latter search method exploits the Baldwin eeect. By modeling a simple genetic algorithm we show that functions exist where si...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملAdvantages Of Using Memetic Algorithms In The N-Person Iterated Prisoner's Dilemma Game
Memetic algorithms are a type of genetic algorithms very valuable in optimization problems. They are based on the concept of “meme”, and use local search techniques, which allow them to avoid premature convergence to suboptimal solutions. Among these algorithms we can consider Lamarckian and Baldwinian models, depending on whether they modify (the former) or not (the latter) the agent’s genotyp...
متن کاملMemetic algorithm using multi-surrogates for computationally expensive optimization problems
In this paper, we present a Multi-Surrogates Assisted Memetic Algorithm (MSAMA) for solving optimization problems with computationally expensive fitness functions. The essential backbone of our framework is an evolutionary algorithm coupled with a local search solver that employs multi-surrogates in the spirit of Lamarckian learning. Inspired by the notion of 'blessing and curse of uncertainty'...
متن کاملFitness Landscapes, Memetic Algorithms, and Greedy Operators for Graph Bipartitioning
The fitness landscape of the graph bipartitioning problem is investigated by performing a search space analysis for several types of graphs. The analysis shows that the structure of the search space is significantly different for the types of instances studied. Moreover, with increasing epistasis, the amount of gene interactions in the representation of a solution in an evolutionary algorithm, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Memetic Computing
دوره 1 شماره
صفحات -
تاریخ انتشار 2009